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Introduction

“These graphs - expanders - are highly connected sparse graphs that play an
important role in combinatorics and computer science. Loosely speaking, they
are “fat and round”: one cannot cut them into two large subsets without cutting a
lot of edges. Or, equivalently, for every subset A of the vertices of the graphs, its
boundary, i.e., the vertices outside A that are connected to A, form a fairly large
set compared to A. Such graphs were known to exist by random consideration,
but explicit constructions are desired.” - Alex Lubotzky



Lecture 1: Definition ((n, k, ε)-Expander)

For 0 < ε ∈ R, a finite k-regular graph G = (V,E) with |V | = n (i.e. |E| = kn
2
)

is called an (n, k, ε)-expander if for all A ⊂ V :

|∂A| ≥ ε(1− |A|
n

)|A|,

where ∂A = {y ∈ V \A : (x, y) ∈ E, x ∈ A} is the boundary of A.

I Each finite connected regular graph is (trivially) an expander for some ε > 0.
I This notion is meaningful only when one considers an infinite family of

(n, k, ε)-expander, where n→∞ with k and ε fixed.
I Expect k as small as possible (sparse) and ε as large as possible (highly

connected).
I The basic idea behind all the definitions of expanders is always that every set is

guaranteed to ‘expand’ by some fixed amount.



Definition ((n, k, c′)-Expander: Bi-partite version)

For 0 < ε′ ∈ R, an (n, k, ε′)-expander G is a bi-partite k-regular graph with two
sets I and O with |I| = n = |O|, if for any A ⊂ I with |A| ≤ n

2
, we have:

|∂A| ≥ (1 + ε′)|A|,

where ∂A = {y ∈ V \A : (x, y) ∈ E, x ∈ A} is the boundary of A.

I Starting with an expander as in the previous definition, we get a bi-partite ex-
pander by taking a double cover of G = (V,E), where I and O are disjoint copies
of V . A vertex in I is joined by an edge with a ‘twin’ vertex of O, and to the
twins in O, of all its neighbours in G.

I Converse is obtained by identifying I and O ‘suitably’.
I Expansion coefficients ε and ε′ will change accordingly.



Existence of an Expander

It is easier to show that expanders exist, than to actually construct one. Now by some
counting argument (following Sarnak) we will show that bi-partite (n, k, ε)-expanders
exist. We will sketch a proof for k ≥ 5 and ε = 3

2
and this can be extended to the

general case.

I Let I = O = {1, 2, · · · , n}. Construct a k-regular bi-partite graph Xπ by taking
k permutations π = (π1, π2, · · · , πk), πi ∈ Sn and joining each j to πr(j) for
r = 1, . . . , k.

I There are total (n!)k many choices of π, and hence of Xπ (not all distinct).

I Call π = (π1, . . . , πk) bad if for some A ⊂ I with |A| ≤ n
2
there is B ⊂ O with

|B| ≤ 3
2
|A| for which πr(A) ⊂ B, r = 1, . . . , k. We want to bound the number

of such bad π’s.

I Let, |A| = t ≤ n
2
and t ≤ |B| = m ≤ 3

2
t be as above. The number of bad π’s

corresponding to such A and B is:

([m(m− 1) · · · (m− t+ 1)](n− t)!)k = (
m!(n− t)!
(m− t)!

)k.



Existence of an Expander: Contd.

I Hence the total number of bad π’s (denoted #BAD) is atmost

∑
t≤n

2

∑
t≤m≤ 3t

2

(
n

t

)(
n

m

)
(
m!(n− t)!
(m− t)!

)
k
.

Let the summand be denoted by R(t).
I ∑

t≤n
2

∑
t≤m≤ 3t

2

R(t) =
∑

t≤n
3

∑
t≤m≤ 3t

2

R(t) +
∑

n
3

≤t≤n
2

∑
t≤m≤ 3t

2

R(t) = I + II

I I ≤ n4((n− 1)!)k and hence, for k ≥ 5, I
(n!)k

→ 0. Also, II
(n!)k

→ 0 as n→∞.

I Hence, for k ≥ 5, #BAD
(n!)k

→ 0 as n→∞.

I ‘Most’ k-regular bi-partite graphs Xπ constructed as above are expanders.
I Hence, expanders certainly exist.



Definition: Cheeger - constant

The optimal c > 0 for a finite k-regular graph G, denoted by h(G) and called the
(discrete) Cheeger constant (or the expanding constant/isoperimetric constant, inspired
by analogous notion in Riemannian Geometry), is a measure of edge expansion in G.

h(G) = inf
A⊂V,|A|≤ 1

2
|V |

|∂A|
|A|

.

1. Let G = Kn be the complete graph with n vertices. Then h(Kn) = 1.

2. Let G = Td be the regular tree of degree d ≥ 2. Then h(Td) = d− 2.

Let G be a k-regular graph with n vertices.
I If G is an (n, k, c)-expander, then h(G) ≥ c

2
.

I G is an (n, k,
h(G)
k

)-expander.



Definition (Combinatorial Laplacian)

I On a finite, connected, k-regular graph G, the Markov operator (or averaging
operator) P on the set of functions on G is defined by

(Pf)(x) :=
1

k

∑
x∼y

f(y)

I P defines a self-adjoint contraction (||Pf ||2 ≤ ||f ||2) on l2(G). So, the spectrum
of P is real and contained in [−1, 1]. In decreasing order eigenvalues of P are
µ0 ≥ µ1 ≥ µ2 · · · ≥ µ|G|.

I The highest eigenvalue of P is 1 (since 1 is an eigenfunction). Since G is con-
nected, (upto scalars) 1 is the only eigenfunction with eigenvalue 1 (Maximum
modulus principle). µ0 = 1, µ1 < 1.

I The operator ∆ := Id− P is self-adjoint with non-negative eigenvalues denoted
as λ0 = 0 < λ1 ≤ λ2 ≤ · · · ≤ λ|G| where λi(G) = 1 − µi(G). This operator ∆
is called the combinatorial Laplacian and λ1 is called the spectral gap.

Discrete Cheeger-Buser inequality

Given a connected k-regualr graph G, we have:

1

2
λ1(G) ≤

1

k
h(G) ≤

√
2λ1(G).



Definition: Expander Family

Let k ∈ N be a fixed integer and let 0 < ε ∈ R be a constant. A family
{Gn}n∈N = {(Vn, En)}n∈N of finite, connected, k-regular graphs is a family of
(k, ε)-expanders if

(i) limn→∞ |Vn| =∞
(ii) λ1(Gn) ≥ ε for all n ∈ N.

Equivalently,

Let k ∈ N be a fixed integer and let 0 < ε′ ∈ R be a constant. A family
{Gn}n∈N = {(Vn, En)}n∈N of finite, connected, k-regular graphs is a family of
(k, ε′)-expanders if

(i) limn→∞ |Vn| =∞
(ii) h(Gn) ≥ ε′ for all n ∈ N.



Kazhdan’s Property (T)

I Unitary representation of a discrete group G consists of a pair (π,H), where
H is a Hilbert space, and π : G → B(H) is a homomorphism such that
π(g) is unitary for all g ∈ G.

I (π,H) is reducible if there exists a proper closed subspace H′ ⊂ H such
that π(g)(H′) ⊂ H′ for all g ∈ G. π is irreducible otherwise.

Property (T)

A finitely generated discrete group G with some finite generating set S has
property (T) if there exists ε > 0 such that for all non-trivial irreducible rep-
resentations (π,H) of G, there exists s ∈ S such that ||π(s)(v) − v|| ≥ ε for
all unit vectors in H. In other words this means ‘some neighbourhood’ of the
one-dimensional trivial representation ρ0 contains only ρ0.



Construction I: à la Margulis

Margulis was the first to explicitly construct a family of expanders, using Property (T).

Theorem (Margulis): Suppose Γ is a group with Kazhdan’s property (T) and S is a
symmetric generating set such that |S| = k. Let Γn ≤ Γ be a family of finite index
normal subgroups such that the index [Γ : Γn] tends to infinity as n → ∞. Then the
family of k-regular Cayley graphs Gn = G(Γ/Γn, S) forms a family of expanders.

Proof:

I Let l20(Γ/Γn) := {f ∈ l2(Γ/Γn) :
∑
x∈Γ/Γn

f(x) = 0}

I Γ y l20(Γ/Γn), πn denotes the resulting unitary representation

I Property (T) gives the Kazhdan’s constant ε = ε(S) > 0, such that for any unitary
representation π without an invariant vector maxs∈S ||π(s)(f)− f || ≥ ε||f ||

I πn does not have any non-zero Γ-invariant vector in l20(Γ/Γn)



Construction I: à la Margulis (Contd.)

I Let A ⊂ Gn, with |A| = a and let B = Gn \A with |B| = b = |Gn| − a.

I Let f = bχA − aχB . Then f ∈ l20(Γ/Γn) and ||f ||2 = ab2 + ba2 = |Gn|ab

I For every s ∈ S, ||πn(s)f − f ||2 = (a+ b)2|Es(A,B)|, where Es(A,B) = {x ∈
Gn : x ∈ A and xs ∈ B or x ∈ B and xs ∈ A}

I There exists s ∈ S such that |∂A| ≥ 1
2
|Es(A,B)| = ||πn(s)f−f ||2

2|Gn|2
≥ ε2||f ||2

2|Gn|2

I Therefore, |∂A| ≥ ε2ab
2|Gn|

= ε2

2
· (1− a

|Gn|
)a = ε2

2
· (1− |A|

|Gn|
)|A|

I {Gn} is an expander family.



Remarks

1. In the above proof, the assumption of Γn being a normal subgroup in Γ is su-
perfluous. Γn can be arbitrary finite index subgroup. In that case one needs to
consider the Schreier graph S(Γ/Γn, S) instead of the Cayley graph G(Γ/Γn, S).
Vertices in S(Γ/Γn, S) are left cosets of Γ modulo Γn and two cosets aΓn and
bΓn are connected by s ∈ S if saΓn = bΓn.

2. This proof also shows that to construct expander families we do not need to use
the full power of property (T). We only needed the natural representations of Γ
in l2(Γ/Γn) to be bounded away from the trivial representation.

3. Let Γ be an amenable group generated by a finite set S. Let {Γn}n∈N be an
infinite family of finite index subgroups with |Γ/Γn| → ∞ as n → ∞. Still,
G(Γ/Γn, S) is not a family of expanders. The problem here would be existence
of almost invariant vectors. This highlights the importance of the property (T)
assumption.



Examples

1. Consider Γ = SL3(Z) with generating set given by the elementary matrices.
SL3(Z) satisfies property (T) and ε = 1

960
is a Kazhdan’s constant for this

group. For every prime integer p, let

Γ(p) = {a ∈ Γ : A ≡ I mod p}

which is the kernel of the surjective homomorphism SL3(Z)→ SL3(Z/pZ) (given
by reduction modulo p) be the principal congruence subgroups. Since, Γ/Γ(p) '
SL3(Z/pZ), Γ(p) has finite index in Γ. The Schreier graphs {G(Γ/Γ(p), S)}p
form an expander family.

2. (Selberg’s 3
16

Theorem and Expanders) SL2(Z) does not satisfy property (T).
But, if Γ(m) = ker{SL2(Z → SL2(Z/mZ}, a celebrated theorem of Selberg
sates that λ1(H2/Γ(m)) ≥ 3

16
. It can be shown that the Cheeger constant of the

dual graph G(H2/Γ(m)) of a triangulation for the quotient H2/Γ(m) is bounded
below. It follows that G(H2/Γ(m)) forms an expander family.



Property (τ)

A finitely generated group Γ with finite symmetric generating set S is said to have
property (τ) with respect to a family of finite index (normal) subgroups {Γn}n if the
family of Cayley graphs G(Γ/Γn, Sn) where Sn is the projection of S to Γ/Γn is a
family of expanders. If {Γn}n runs over all finite index normal subgroups of Γ, then we
say that Γ has property (τ).

Easy to observe that property (T) implies property (τ), but the other implication is not true.



Lecture 2: Recap

I Expander Family: Let k ∈ N and let 0 < ε ∈ R. A family of finite, connected,
k-regular graphs {Gn}n∈N = {(Vn, En)}n∈N is a family of (k, ε)-expanders if:
(i) limn→∞ |Vn| =∞, (ii) λ1(Gn) ≥ ε for all n ∈ N.

I Construction I (à la Margulis): Let Γ has Kazhdan’s property (T) and S is a
symmetric generating set with |S| = k. Let Γn ≤ Γ be a family of finite index
subgroups such that [Γ : Γn] tends to infinity as n→∞. Then Gn = G(Γ/Γn, S)
forms a family of expanders.

I Property (τ): A group Γ with finite symmetric generating set S has property (τ)
with respect to a family of finite index subgroups {Γn}n, if G(Γ/Γn, Sn) (where
Sn is the projection of S to Γ/Γn) is an expander family. If {Γn}n runs over all
finite index normal subgroups of Γ, then we say that Γ has property (τ).



Alon-Boppana Theorem

“To have good quality expanders, the spectral gap has to be as large as possible. How-
ever, the spectral gap cannot be too large...”

I X = Xn,k: undirected, k-regular graph on n vertices.
I A = AX defined as (Af)(i) :=

∑n
j=1 Aijf(i) for i ∈ V (X) and f ∈ L2(X), is

a symmetric matrix with real eigenvalues. k is an eigenvalues of A.
I λ(X) := max{|λ| : λ is an eigenvalue of A, |λ| 6= k}

(Alon-Boppana Theorem)

Let Xn,k be an infinite family of k-regular connected graphs on n vertices with k fixed
and n→∞. Then, lim infn→∞ λ(Xn,k) ≥ 2

√
k − 1 or λ(Xn,k) ≥ 2

√
k − 1− o(1).

i.e. for a large k-regular graph X the strongest upper bound for λ(X) is 2
√
k − 1.

Definition: A k-regular finite graph X is Ramanujan if λ(X) ≤ 2
√
k − 1.

In some sense, Ramanujan graphs, are the optimal expanders.



Construction II: Ramanujan Graphs Xp,q

One of the major developments in the study of expanders was the construction of
Ramanujan Graphs by Lubotzky, Philips and Sarnak (also, independently by Margulis).

I Let p be a prime congruent to 1 modulo 4. Let, H(Z) denote the integral
quaternions: H(Z) = {α = a0 +a1i+a2j+a3k : ar ∈ Z}. Let, ᾱ = a0−a1i−
a2j − a3k and N(α) = αᾱ = a2

0 + a2
1 + a2

2 + a2
3.

I Sp = {α ∈ H(Z) : N(α) = p, α ≡ 1(mod 2), a0 > 1}. |Sp| = p + 1 (follows
from a theorem of Jacobi).

I Consider τq : H(Z)→ H(Z/qZ) (reduction modulo q)

I There exists isomorphism ψq : H(Z/qZ) → M2(Z/qZ) such that (i) N(α) =
detψq(α) and (ii) if α ∈ H(Z/qZ) is real (α = ᾱ), ψq(α) is a scalar matrix.

I For α ∈ Sp, ψq(τq(α)) ∈ GL(2, q) ⊂M2(Z/qZ), since p 6= q.

I Also, ψq(τq(αᾱ)) = ψq(τq(ᾱα)) is a non-zero scalar matrix in GL(2, q).

I Now consider φ : GL(2, q)→ PGL(2, q) whose kernel is the scalar matrices.



Construction II: Ramanujan Graphs Xp,q - Contd.

I Set, Sp,q = (φ ◦ ψq ◦ τq)(Sp). Can be checked easily that S−1
p,q = Sp,q .

I If q is ‘large enough’ w.r.t. p, |Sp,q | = p+ 1.

I If p is congruent to a perfect square modulo q (or if p is a quadratic residue
modulo q) denoted ( p

q
) = 1, Sp,q is actually contained in PSL(2, q). Then we

define Xp,q = G(PSL(2, q), Sp,q), the Cayley graph of PSL(2, q) w.r.t. Sp,q .

I Else, p is not congruent to a square modulo q, denoted ( p
q

) = −1, Sp,q is actually
contained in PGL(2, q)\PSL(2, q). Then we defineXp,q = G(PGL(2, q), Sp,q),
the Cayley graph of PGL(2, q) w.r.t. Sp,q . In this case Xp,q is bipartite with
edges between PSL(2, q) and its complement.

I More interesting is the situation when ( p
q

) = 1. In this case Xp,q is a (p + 1)-

regular graph with |Xp,q | = q(q2−1)
2

and it can be shown that λ(Xp,q) = 2
√
p.

I For a fixed p, {Xp,q}(q is prime) forms an expander family. This is an example of
an ‘optimally expanding’ expander.



Construction III: Zig-Zag Product

‘In a breakthrough work Reingold, Vadhan and Wigderson showed that there is an
elementary combinatorial way to build expanders via the ‘Zig-Zag product’ of graphs,
which they introduced.’

I Given an (n,m) graph (i.e. m regular with n vertices) X and an (m, d) graph
Y , the Zig-Zag product is a method that produces an (mn, d2) graph X ◦ Y .

I Expansion in X ◦ Y can be bounded by expansions in X and Y .

I Start with a (d4, d) graph X = X0 with a good spectral gap. (Exists!)

I For a graph Y , let Y 2 be the graph with the same vertex set as Y , with edges
between end-points of any path of length 2.

I Define X1 = X2 (a (d4, d2) graph), and inductively, Xn = X2
n−1 ◦X, for n ≥ 1.

I Therefore, Xn is a (d4n, d2) graph.

I {Xn}∞n=1 is a family of d2-regular graphs with |Xn| → ∞ and the Cheeger

constant h(Xn) ≥ d2

4
, for all n. Hence, {Xn}n forms an expander family.



Expander Cayley graphs: survey of examples and non-examples

1. (Symmetric groups as expanders) M. Kassabov proved the following remarkable
result proving certain Cayley graphs of symmetric groups Sn expanders. This is
important because there exists generating sets of Sn such that the Cayley graphs
are not expanders.

Theorem(Kassabov): There exists k ∈ N and 0 < ε ∈ R such that for every n ≥ 5,
the symmetric group Sn has a symmetric generating subset Σ with |Σ| < k for which
{G(Sn,Σ)}n is an ε-expander family.

2. (Finite solvable groups are never expanders) Fix l, k ∈ N. Suppose Gn is a family
of k-regular Cayley graphs of finite solvable groups Gn with derived lenth ≤ l.
Then {G} is not a family of expanders.

3. (Simple groups as expanders) There is k ≥ 2 and ε > 0 such that every finite
simple group G has a k-regular Cayley graph which is an ε-expander. Kassabov,
Lubotzky and Nikolov proved it except for Suzuki groups {Suz(22n+1)}n, which
was later proved by Breuillard, Green, Tao.

4. (Bourgain-Gamburd Theorem) Given k ≥ 1 and τ > 0 there is ε = ε(k, τ) > 0
such that every Cayley graph G(SL(2, p), S) of SL(2, p) with symmetric gener-
ating set S of size 2k and girth at least τ log p is an expander.



A few applications

I Counter examples to long-standing Baum-Connes conjecture was constructed by
M. Gromov and others, using ‘random groups’ constructed via expanders.

I Expanders do not ‘coarsely embed’ into Hilbert spaces. Due to which it is inter-
esting to find examples of groups with expanders in their Cayley graphs, in order
to find counter examples to groups satisfying Property (A) or related notions.

I A. Valette used Ramanujan graphs to study different possible norms on certain
tensor product C∗-algebra of bounded linear operators on a Hilbert space.

I Proof of the fact that pseudo-Anosov elements in mapping class groupMCG(Σg)
are exponentially generic, uses expanders.
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Thank you!


